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THE INVERSE SCATTERING AND TARGET IDENTIFICATION PROBLEM

I K.J. Breeding and A.A. Ksienski

I
I. INTRODUCTION

j In order to obtain an exact solution te the inverse scattering

problem, the target response is required over a continuous band of

I frequencies and aspect angles.[l] An alternative approach to the problem

which requires a much more modest amount of measurement data but assumes

substantial a priori information is as follows: A finite set of

.I alternatives is specified regarding target shape and composition and a

set of measurements is carried out to provide the answer as to which one

I of the alternatives holds. Since it is necessary to restrict the measure-

ments to a relatively small range of frequencies the questio. -rises as to

what frequency band is best to characterize the target and to provide the

I most reliable discrimination from other targets. The best apparent choice

is the highest frequency possible since for a given per cent bandwidth it

I would contribute the greatest amount of information. Also, the high

frequencies provide the resolution which yield fine detail. The high

frequency approach has been the most widely accepted approach for obtaining

SI target signatures. However, an examination of the Fourier transform of

the impulse response indicated that the frequEncy range corresponding to

I wavelengths starting with the size of the object and increasing to ten

times its dimension would provide the most useful initial information.[2,3]

At higher frequencies the responses of various objects appear to be less

typical of any specific object. This explains the failure of the "target

signature" approach where the scattering cross sections were examined1
I



mostly at high frequencies. This does not imply ,that the upper end of

the spectrum is not useful for the characterizatior of objects, however

it must be utilized in conjunction with the lower frequency response

to provide a meaningful description. The higher frequencies characterize

the finer detail of the cbject while the lower frequencies provide the

gross detail such as overall dimensions, approximate shape, and material.

Obviously presenting only fine detail yields a rather confusing picture.

It is the low frequency range which is used in this paper to

characterize the various objects of interest, and provides the infor-

mation used to identify the objects, i.e., to choose the alternative

which is most likely to be true. The term "likelihood" rather than

"certainty" is used because of the incomplete knowledge of the target

response as represented by a limited frequency and aspect angle sampling

and, of course, due to noise and measurement errors. To determine

whether the various targets of interest can be reliably identified based

on the proposed low frequency characterization it must be shown that

each target is represented in nonoverlapping regions of an appropriate

space, such that when a certain set of radar measurements have been

made a decision could be reached with regard to the t.rget and that

such decision would have a high probability of being correct.

The specific set of frequencies chosen to illuminate the target

are 12 harmonically related frequencies in the Rayleigh anu first

resonance region. The range of aspect angles has been as complete

as possible to provide the most comprehensive representation of the

object. The radar returns provide both phase and amplitude information

which would yield 3 24 dimensional vector which could then represen.

2



each aspect angle of the object. The set of points, in such a 24

I dimensional spacc, corresponding to the various aspect angles would

then delineate the region of the space which would characterize the

particular object and hopefully would do it uniquely, i.e., without

overlapping a region corresponding to another object. Although, as

mentioned, the phase information is available, it was decided to utilize

I only the ampli:•udes of the radar returns. The reason fo'r this deci'sion

is that to date no satisfactory method has been found to remove the

I sensitivity of the phase data to r-enge, and since the fundamental

properties of class separability was investigated data with large potential

I for errors were considered undesirabL-%.

of Thus, each vbject was represented by a set of real 12-tuples

x = (xl, x2 , .-. , X12 ) aach element of which ccrresponded to the magnitude

Iof the return signal at the frequency 30i MHz (where i = 1, - 12).

There is, of course, one such vector for each aspect angle associated with

I the objects in question.

I Various aspects of target classification utilizing the above

spectral representation have been studied. In Section IT th,, lineat

separability of the various classes is considered. Section Ill Lresents

a specific approach for the design of an automatic target classifier and

I• its performance is tested for various objects in the presence of noise and

errors. Section IV discusses adaptive procedure for target classification.

Section V presents a method for identification of target dynamics and,

finally, Section VI considers the use of nonlinear decision surfaces for

the target classification.

I
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II. LINEAR SEPARABILITY OF OBJECT CLASSES

Since the data is represented as a set of real 12-tuples for each

object, the possibility e:xists of attempting a linear separation of

classes in 12 space. In general such linear separation may be des-

cribed as follows. Let S = {a,, a2, ""I adr be a set of r objects to

be classified. Associated with each object aieS is a set of n-tuples

(in our case, 12-tuples), Aai. Without loss of generality, define the

sets

(1) A Aa 1

and

p
(2) B U Aaj, 2 <p < r.

j=2

The sets A and B are said to be linearly separable if, and only if,

there exists a hyperplane, H, characterized by the separating vector,

[•l, I 2' " ; TI = UL,; TJ such that

(j)
(3) a _>T, for all a eA

and

j) 0)
S•* < T, for all LB,

where W• _x denotes the inner product of vectors W and x.

4 [



In general measurement errors and other forms of noise may be

J *ntroduced into the data. Since a solution to (3) and (4) consists

of determining a real vector • and a real number T such that these

i inequalities are satisfied , any small error in new data may place the

resulting point on the wrong side of the hyperplane. To reduce the

I! effects of minor variations in data due to noise or measurement errors,

it is desirable to have no points in the original training sets, A and

B, fall on the hyperplane. This objective may formally be handled by

reformulating the original problem as

+ *0) *(j)(5) W a > T + 6, for all a e A

and
S(6)• i•< T , I(j)

(6) < • - for all € B

where 6 is an arbitrarily small positive real number. These inequali-

ties may be normalized by dividing through by 6 and replacing W by 1/A

and T by T/6. In so doing the initial problem of determining the
I separating vector [-w; T] from the original training sets may be reformu-

lated asI
7) (j) 0(J)

(7) a >_T + l, for all a c A

and

14 7 . _>(J) _().j
(8) b < T - 1, for all b B.

I
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Ii
Problems of the type given by inequalities (7) and (8) will, of

course, have an infinity of solutions if one exists at all. There are

many ways of solving problems formulated as in (7) and (8). One

particularly appropriate procedure which determines a specified solution,

assuming one exi.sts, is that of linear prtogramming.[4] Jn this approach

inequalities (7) and (8) are solved subject to the condition that some

linear form is to be minimized. It has been shown[5] that the relia-

bility of a threshold device used to realize a linear classifier is

increased if the value of T in (7) and (8) is minimized. Thus, the

objective function of minimizing T subject to the constraints im-

pesed by (7) and (8) forms the reqnired linear programming problem.

Results

Referring to the original backscatter data it will be observed

that this original data, which forms the training sets, consisted of

10 points representing the prolate spheroid (P.S.), 10 points for the

cube (c), 5 points for the hemispherical boss (HSB), 3 sphere points

(S), and 2 points for the wire. To investigate the possibility of

linear separability, hyperplanes were found based on the formulation

in (7) and (8) which separated each object from all the others. The

somewhat unexpected result was that this was possible. The resulting

hyperplane direction numbers are shown in Table I. Two rather inter-

esting observations may be made. First, note that in each case T = 0.

This, of course, means that the respective separating hyperplane passes

through the origin. The physical reason for this is not at present clear.

The second observation is that w, = 0 in all cases. It has been conject-

ured [2] that this compnnent, which corresponds to the first resonant

6



I peak, is in some way indicative of the overall size of the target.

Since each of the objects considered were roughly of the same size, this

first resonant peak would then appear at about the same frequency in each

case. Thus, this component can play no part in the overall separation.

Since each of the objects is separable from all others taken to-

:1 gether, they must be pairwise separable. These pairwise separating

i hyperplanes were next calculated and their parameters are given in

Table II. It should be observed once again that T = 0, wl = 0, as would

j be expected from the results shown in Table I. These pairwise separating

hyperplanes are used later as a basis for an automatic classification

I procedure. One further comment should be made here. Each occurrence of a

zero in Tables I and I! implies that there exists some characteristic

similarity between the classes of objects in question and indicates that

I other dimensions are more effective in the identification of the object.

Exactly what these similarities may be due to is not, at this time, known.

Since only a relatively few number of points were used to de-

termine the separating hyperplanes, it is fair to wonder whether

separation is maintained for data obtained at different aspect angles

than used initially. To this end, the data for the cube, hemi-spherical

boss, and prolate spheroid were interpolated to produce data at 10

I increments in aspect angle. The interpolation procedure used is dis-

cussed in detail in Appendix A. These interpolated data were then com-

pared with each of the hyperplanes of Table II with the result that the

separation specified by inequalities (7) and (8) was maintained. This

fact indicates that the data representations taken for the objects is

I apparently quite indicative of the objects and further that these

points must strongly cluster in the Euclidian 12 space, E12 .

7
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TABLE I

TOTAL SEPARATING HYPERPLANES

C. S. P.S. H.z.B. W

Wi 0 0 e( 0 0

w2 -157.91 -113.46 11.54 0 -5.78

w 3 136.42 83.1 0 -176.55 -7.09

"'4 -46.32 0 -2.78 0 7.54

w5 0 -37.33 0 0 0

"6 -5.97 0 0 0 16.5

w7 0 12.57 -4.34 0 -38.06

w8 0 -199.72 0 165.48 6.86

W9 6.66 60.71 -4.35 0 0

W10 0 -109.93 0 0 27.49

all 0 236.56 0 0 -18.94

•I12 -4.29 0 0 0 0

T 0 0 0 0 0

I.
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As was mentioned earlier, the inequalities (3) and (4) were modi-

fied to inequalitie (7)n• n (S) as an •ttcmpt to reduce the effect of F1

noise on the identification of the objects. To examine the consequences

of this modification, two experiments were performed on the data for the

prolate spheroid, the three spheres, and five of the cube data points.

In the first experiment uniformly distributed noise bounded in absolute

value by a constant, a, was added to the elements of the cube and sphere

backscatter data. New separating hyperplanes were then computed based

on inequalities (7) and (8). The results of these experiments are given

in Table III where the signal to noise ratio, S/N, is based on the average

return signal amplitude and the average of the absolute value of the

applied noise. The first observation to be made from this data is that

the general topology of the points in E12 are not appreciably affected by

the additionq of noise whose average level is significantly below that of

the signal. This is indicated by the fact that the resulting hyperplanes

are only slightly varied from their original positions up to an S/N of

19 dB. However, when the S/N becomes - ldB the situation changes con-

siderably. First, interestingly enough, the sets of points are linearly

separable but the separating hyperplanes orientation has been considerably

altered from the no noise situation. These results thus, indirectly

reinforce the choice for inequalities (7) and (8).

In the second experiment noise in the same steps as for Table III

was added to the sphere, cube, and prolate spheroid data. The relative

distance, X , from the sphere/cube hyperplane was then computed.

These computations are based, effectively, on inequalities (3) and (4).

This data is shown in Table IV. In this table a positive number means

10
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STABLE II

SPHERE/CUBE HYPERPLANES WITH NOISE ADDED TO RETURN SIGNAL

S/N 36 dB 19 dB -1 dB 19 dB
__ No _ _>_n__se_ .>1_noise2 1>1.noise .1>1noisel

Noise S.only S.only '.only C S

I' WI O 0 0 0 0

iw(2 0 0 0 0 0

13 .5 .41 .27 0 .26

I14 0 0 0 .06 0

w5 0 0 0 1.46 0

I w6 4.72 4.84 7.21 0 6.99

w 7 0 0 0 -. 57 0

08 -3.35 -3.28 -3.94 -1.46 -4.27

J W9 1.32 1.26 1.26 1.04 1.94

W10 0 0 0 0 0

O ll 0 0 0 0 0

wl12 0 0 0 0 0

T 0 0 0 0 0

!

1 1
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TABLE IV

RELATIVE DISTANCE OF NOISY POINTS FROM SPHERE!CUBE HYPERPLANE

SN No
Point noise 36 dB 9 dB -1 dB

Sl 1.0 1.03 .65 3.27

S2 3.49 3.44 3.43 -2.45

S3 1.0 .98 .6 3.33

Cl -1.0 -. 97 -. 69 3.34

C2 -1.27 -1.32 -1.79 6.78

C3 -1.0 -1.02 -1.23 -. 24

C4 -1.04 -1.07 -1.39 .03

C5 -1.5 -1.51 -1.56 -5.29

PSI 2.05 2.08 1.54 .96

PS2 2.36 2.31 2.0 5.35

PS3 3.22 3.19 2.82 3.07

PS4 4.36 4.32 5.19 7.02

PS5 4.06 4.06 3.52 .26

PS6 1.76 1.72 1.76 1.83

PS7 .5 .52 .64 -2.75

PS8 .77 .71 .72 6.34

PS9 1.94 1.96 1.59 4.42

PS10 2.57 2.65 2.38 3.51

12
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!i the data point is above the hyperplane." Notiz, from this table, that no

points are misclassified until the S/N becomes about - 1 dB. This fact

confirms the observatinins made from the data of Table III and justifies

the decision to determine the separatip-_! hyperplanes from the training

data based on inequalities (7) and (8). Notice one further thing in

<I Table IV, that the sphere and the prolate spheroid data are located on

the same side of the sphere/cube hyperplane. This result might have been

anticipated from the fact that these two objects, spheres and prolate

I spheroids, are geometrically quite similar.

I III. AUTOMATIC TARGET CLASSIFICATION BASED
ON SPECTRAL RESPONSE

The result that the classes of objects studied above are linearly

separable suggests a possible scheme for automatically identifying

[I targets. Let

I S {aI'"" rrI

J be the set of r object classes with each object represented by the

training set

Aui = , a ai a, , "" r

of n-tuples. In accordance with the results of Section HI assume that

I every pair of object sets, Aai and Aa., are linearly separable by the

hyperplane Hi.j. Each such hypL plane is represented by a separating

vector r•(ij) T Ti] such that

m +(ij) ÷(i,k) f al(i k)
(9) a >_T.ij + 1 for al a c Aa

1 13
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and

÷0(i 4j ÷ j for a (j ,-0

0I0) • a <Tij 1. for al e A-

Thus, inequalities (9) and (10) determine a separating hyperplane for

any pair of training sets Aci and Aaj. Since there are r classes of

objects and since a(i,j) - (j,i) T = - Tj,i, from (9) and (10),

for i ý j, i,j = 1, "" r there will be r(r - 1)/2 distinct hyperplanes.

These hyperplanes may now be used to identify objects in the set S or

to help in the classification of new objects on data which wes not in

the original training sets.

Assume that the hyperplane H i,j have been determined from the

training sets. Further assume that an unknown object xeS is the

target and let

B =-(2) ...

be a set of points characterizing x. The objective now is to attempt

an identification of x as one of the ai e S. For each x(k) e B a

tentative classification of that point into catagory ai may be made on

the basis of the inequality

(i ,j) (k)
(ll) * • x > Ti, i f j, j = 1, 2, " r.

This criteria is used for two purposes. One is to avoid any ambiguity

ar~sirg due to noise on the data and the other is to classify only

those data which lie above and not on the test hyperplane.

14



IAny point satisfying (11) will go into catagory ai and any point

lying on the hyperplane in question should properly be ignored. This

may be done by defining the following. Let

r Of 4(k)

-. (k) if x T,>

(12) :i

ýOotherwise

and let

(k) 1 (k)
(13) Pi j=I

yii

The metric pi (k) thus defines the number of times the point x(k) fell

"on the ci side of the hyperplanes separating ai from the other r - 1

classes of objects. Clearly if pi(k) = r - 1 then +(k) could, with

* Ja high degree of certainty, be classed as representing some view of the

object oi" In general, however, pi(k) < r - I and, in fact, p (k) ý O,

z i, for the general case. If x = ai then pi(k) >_p (k) for all k and

Si • . Since it is desirable to class each -P into one of the classes

I of r catagories it is desirable to have some metric which indicates tne

proportionate classifications of each of the object points. Thus, define

01 ((k)
F (k pi(k) = Max (pj(k)

1 (14) ci(k) = j-l, .- .,r

0 otherwise.

I From (14) a final metric representing all of the data in B may be

I defined as

15

I



I C.(k)
_k=l1

(15) C i S"

S
It should be noted that ) Ci is not in general equal to one, and, thus,

il
cannot be construed as a probability of classification. They are, however,

closely related to the probability of classification with the main dis-

crepancy due to the vanishing of some of the distances. If none of the

points fall on the plane itself the sum of C i would, indeed, be unity.

Thus, the value of C. is bounded from above by the probability measure,1

hence, it is a conservative measure. For example, if Ci = .8 it can be

deduced that at least 80% of the points of set B fell on the ai side of

the hyperplane. In the experiment to be described below, if the data

points Aai are introduced into the classifier and the result is Ci = .8

the conclusion may be drawn that the conditional probability or the

likelihood function p(Ci/Aui) > .8; that is the probability of the object

being classified correctly is at least 80%.

The experiment carried out utilized the pairwise separating hyper-

planes given in Table II. However, the test data used were obtained by

interpolation of the original training data for look angles which were

not previously measurcd or computed (see Appendix A for the interpolatio)n

method), they constituted, therefore, an appropriate test set. In

addition, noisy data were used to test the ability of the classifier to

operate on data contaminated by various amounts of noise or measurement

errors. Finally a set of data representing an object not previously

included in the classification, namely a cylinder, were tested. The

experimental data used are described below with the final metric of

16
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equation (15) given for each of these experiments in Table V. The

notation used here is simplified to denote only the object class, ai

for which the metric Ci is a representative. The experiments performed

are as follows.

1. Interpolated cube data for 4 : 450, a = 150, 16-, ... 240,
and @ polarization with 10 points in the sample set.

2. Interpolated cube data for p 0*, o = 00, '1, 20, 9",9

and 4 polarization with 10 points in the sample set.

3. Interpolated data for hemi-spherical boss for 0 = 150, 160,

170, "', 24* and 4 polarization with 10 pnints in sample set.

4. Interpolated prolate sphere data for e = 160, 170, 180, 190

and p polarization with 4 points in sample set.

I 5. Original prolate spheroid data with noise added to produce

S/N = 36 dB.

6. Same as 5 except that the noise added produced S/N 19 dB.

I 7. Same as 5 except that the noise added produced S/N = -l dB.

8. Five points of the original cube data for = 0, e = 0, 15,

I 30, 45, and ' =45, 0 15 with noise added to produce S/N =

36 4B.

I 9. Saie as 8 except that the noise added produced S/N = 19 dB.

10. Same is 8 except, that the noise added produced S/N = -l dB.

11. Origina. the sphere data point with noise added to produce

an S/N = 36 d3.

12. Same as 11 except that the noise added produced an S/N = 19

I 13. Same as 11 except that the noise added produced an S/N = -l dB.

1 17
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TABLE V

EXPERIMENTAL RECOGNITION RESULTS
AS INDICATED BY THE PARAMETER C.i

!Test PS S HSB c w

1 0 0 I.0• 0
2 0 0 0 1.0 0

3 0 1.0 0 0

4 1.0 10 0 0

5 1.0 0 0 0 0

6 1.0 0 0 0 0

7 .7 0 0 .1 .15

8 0 0 0 .15

1,I 0 ,2 0 .6 .15

i- 0! 0 0 .4 .5-- ' I .

1111 0 1 0 0 0

12 0 .6671 0 .333 0

13 .331 0 0 .333 .333

14 .7 , 0 0 1 .2251,1
15 0 o 0.1 .65

18



S14. Ten points representing a right circular cylinder having a

"diameter of D = .635 m and length L = 127 m oriented along

the Z axis for 6 = 0Q, 100, 200, ...* 90 ° and 6 polarization.

15. The same cylinder as described in 14 but with ý polarization

of illuminating signal.A
I First it may be noted that the interpolated test set experiments

1-4 were classified without any errors. The classification of the prolate

I spheroid is highly reliable even in the presence of noise. As expe1i-

ments 5-7 indicate no errors occurred up to S/N of 19 dB and even at

I S/N = - 1 dB the probability of correct classification was no less than

70%. The cube and sphere classification was less resistant to noise

(experiments 8-13), however, when wrong classifications were made the

reliability factor was indicated as very low, for example, when the sphere

was classified as a cube, wire or prolate spheroid, it was indicated that

I the choices carried only about 30% reliability, stressing the need for

further data to obtain a more reliable decision. Whenever the reliability

indicator Ci exceeded 60% the choice was found to be correct.

The last two experiments are of particular interest. Consider ex-

periment 15 first. Here a right circular cylinder was ill- 4nated in the

same way that the thir, wire (itself a cylinder of dimensions D = .05 mn

I and L = 1 m) was illuminated. The .65 in Table 5 experiment 15 indicates

very strongly the obvious connection between the wire and the cylinder.

j Ir. experiment 14, on the other hand, the polarization wis allon• the

illumination axis or e. The identification for this case resulted in

-I the cylinder appearing as a prolate spheroid. There is a striking

1 19
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similarity here. The ratio of the length to diameter of the cylinder,

2, is the same as the ratio of the major axis to ninor axis of the

prolate spheroid. Further if the discontinuities of the cylinder were

remroved a prolate spheroid could easily be produced. These facts tend

to reinforce the opinion that the spectral response data tends to

cluster in 12 space iin accordance with the general size and shape of

the target object.

IV. ADAPTYVE DETERMINATION OF LINEAR SEPARATING

HYPERF'LANES

The solution of the inequalities (7) and (8) may be handled in a

number of ways. One of which is the simplex method of linear programming

which was used in the previous sections. The main difficulty with this

procedue is that it is generally unable tV ;,andle new or modified data

3ets. It has been shown,[61 however, that sjitable modifications of

linear programming algorithms can produce adaptible linear classifiers.

There are, of mourse, many other algorithms applicable to adaptive

linear classification.[7,8,9] In all of these algorithms the speed of

convergence and the amount of computation is generally quite large.

Adaptive algorithms generally proceed by estimating a separating

hy;aerplane and then making a new estimate based on an observation of

the system with the first estimate. The change, generally, is dictated

by the data which is incorrectly classified. The method by which

each new estimation of separating hyperplanes is made has a great deal

to do with the rapidity of convergence as, also, does the initial hyper-

plane er imate.

-- "- .20
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Let A and B be two sets of n-tuples in Euclidean n space, En*

If A and B are linearly separable, then there exists a real vector w

and a real number T such that

(16) >(i) T, a AI
"(17) <T, b) sB.

i The problem now is to determine the - and T. Consider Fig. 1. A

reasonable approximation to the first hyperplane may be made based on

-the location of the center of gravities of each set A and B. In

particular letIr
A(01 - r ÷(i)

(18) r- i=1II
= -0 ) I(

(19) 4( s i-

,P
'0

IH

eP

I Fig. 1. Illustration of the adaptive proceduyr.
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where r and s are the orders of sets A and B respectively. Then as an

initial estimate of the separating vector let

(20) W(o) = (O) _ (O)
PA PB

and

(21) = Mi ((o) T a(i A.
i

"This hyperplane is shown in Fig. 1 and is labeled Ho. If all of the

vectors in B satisfy (17) then clearly this choice is an admissible

separating hyperplane. Assume, however, that this is not the case.

Let

M {÷(jl) ( 2 )( )B =j2 , .- B

be the set of vectors which do not satisfy inequality (17). The problem

becomes one of ..oving the hyperplane so that these vectors will be

correctly separated. Referring to Fig. 1, if the point PB(°) were

moved in the general direction of the set of vectors B(1) then the

hyperolane Ho, which is perpendicular to the line joining PA and

(o) would be "tipped" in the right way to bring, hopefully, some of

the incorrectly separated vectors to the correct side of the hyperplane.

It turns out, however, that under some conditions this procedure will

produce a nyperplane which is a worse approximation than the first

estimate.

22
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To avoid this situation define the hyperplane Ho as one parallel

to H0 but with a To0 defined as

S(22) T = Max ((o) .]()), B

J

Thus, for H ', inequalities (17) are satisfied for all b(J) E B but0

inequalities (16) will not, in general, be satisfied for all a(') e A.

I Let

SI A(1 ) = {•(il),•(i 2 ), "", ((ial)} -,(-A

I be the set of vectors in A which do not satisfy inequalities (16)H '. UsnBhsifrainpit+(o)

under hyperplane Ho . Using this information point PA may be moved

in the general direction of the set API) and B5 may be moved in the

I direction of the set B(l). Thus, define

(23) PA r(PA()-- /(r +()

and

S(24) PB (r PB °+ ( /(r + a,)

A new hyperplane estimate may now be made based on these quantities as

-Ifollows. Define

1 23



(25) +(l) =A .B

and
-* (; ( ) (i ) ) .

(26) T1 :Min a

The resulting hyperplane is shown in Fig. 1 as H1 .

In this illustration H1 succeeded in separating sets A and B. In

general this may not happen. What is required in this case is to repeat

the above procedure. In general each estimate may bE defined as follows:

(27) -(g) (g) (g)
(27 j~g) PA PB

and

(28) Tg = Min ((g)
i

where

•_• (g-l j) iCg
"A A(g-l) + a.

(29) •A(g) j L !0=° _ __l

A g-l
jLo a + ag

and

()g-l) +

" (30) ýB(g) =__ L\-: -- 1
g-1

_ j=° +g
• •-••24



I where ao = r, =o S and a. and 8. are the orders of the sets

'30) AM Ma ( b )~(31) A a A a < T 3

i and

U i) _*(i (0) C*i
(32) B e •({. > T Min ) a

respectively.

This procedure was applied to some 40 different problems ranging

in dimensionality from 2 to 5 variables. Among the problems which had

the sets A and B consisting of binary n tuples (O's and l's), the

procedure converged for all problems in from 1 to 2 iterations.* The

class of problems in which the vectors were arbitrary real numbers con-

* verged generally in from 3 - 4 iteratiG.ns. One real vector problem

required 79 iterations. Cnmparing these convergence rates with other

<3 procedures of a similar nature (cf references mentioned above) it was

found that in all cases convergence was from 2 to 4 times faster than the

other methods. Thus, the possibility of using this procedure for an

'I adaptive identification procedure is certainly feasible.

I

I * An iteration is defined here as a check of inequalities (16) and (17)
for all vectors in A and B.

2
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V. IDENTIFICATION OF TARGET DYNAMICS

Linear separability may be used for not only identifying target

objects, as indicated above, but also as a method of inferring infor-

mation concerning target dynamics. As an illustration of this process

assume that the object ai e S has cylindrical symi.try cd is the target

object. Assume further that this object is rotating in some way in free

space. At a set of discrete time intervals data is taken which represents

"the impulse response presented by ai at these time intervals.* Let this

set of data be B. Then each x(k) • B represents the object as a function

of its aspect angle in time.

Once the object represented by the data in the set B has been

identified a real valued function of time, g(t), may be defined based

on some separating hyperplane, Hip, which separates data representative

of ai from any other data set. Let this hyperplane have a separating

vector of [.+i(j); T i.j]. Then g(t) may be defined as

(i,j)(33) g(t) = " (t) - Ti~j J()•B

This function represents the relative distance between the hyperplane,

Hi j, and the point x(t) which, in turn, is a function of aspect angle.

• It may be assumed here that the object is effectively motionless during
the measurement interval.

26
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At training time, a function of € the aspect anjle, may be

SI generated based on the data in the training set Aai. For the case under

consideration let this function be

",i'j) ÷(i,) 0 (i,'.0
1 (34) f a () -Ti a e Aci

f(*) may reasonably be assumed to be a well behaved, continuous function

of aspect angle. The aspect angle, *, is related to the spherical

coordinates, e and € as shown in Fig. 2. From this figure

I t AXIS OF
SYMMETRY

INCIDENT - ., ,
SILLUMINATION

XI

I
Fig. 2. Aspect angle of rotational axis of a

cylindrical symmetrical object.
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(35) = cos-' (sine cosW).

In general both o and * are functions of time. Thus, if g(t) can be

related to f(o) at each instant of time then *(t) may be found and from

(35) e(t) and ý(t) may be inferred. This inference is, of course, not

without ambiguity in the general case.

Consider as an example the following case. Let the object ai be

rotating in space such that e = w0t and 0 - . Thus ai is rotating

in a plane making an angle @o with the direction of illumination. Thus,

p(t) becomes

(36) *(t) = cos-1 (sin(wot + 0) cos @o),

where a is a phase angle produced by the time at which observations are

begun.i

Assume that during the observational period ai goes through at

least one full revolution. Thus, the axis of symmetry must become co-

linear with the z axis at least once. If this instant of time can be

identified uniquely then w is found from the period of revolution and

B becomes a = - o to where to is the time at which i(t) = 90 . With

this information at hand the value of o becomes simply

(37) 'o = Min (*(t)).
t

Clearly this class of target dynamics is easily recognized. Other

types of motion become more difficult to identify. This identification

may, however, be made based on the training function f(*) if a one to

one correspondence between f( ) and g(t) can be found.

28
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SVI. NON LINEAR DECISION SURFACES

The application of separating hyperplanes to classify n-dimensional

data, as was done above, may pose problems when the number of alternative

objects is rather large. One, in particular, is that a single object

classifier is not possible due to the necessity of having at least two

sets of data to define a separating hyperplane. One data set is, of

I course, the set representing the target of interest. The second data set

would thus, become that set representing all target objects which ire not

the chosen one - a most formidable array of data if the number of object

classes is large.

A second dif,'iculty has to do with updating the number of target

I classes. If a new target class is to be added to the set of k original

classes then the addition will require determination of k new hyperplanes.

I Furtheniore, this requires that the original data sets used for training

be available for the addition of the new class.

One way of avoiding these difficulties is to use closed separ-

I ating hypersurface such as "hyperboxes" and "hyperellipsoids." A

hyperbox may be defined in n space, as a closed surface bounded by 2n

I hyperplanes such that each hyperplane is parallel to exactly one other

hyperplane and perpendicular to the remaining 2n-2 hyperplanes. One

I particularly easy hyperbox to specity is one having its faces perpen-

i dicular to the coordinate axis. The position of each far- along the

axis is then determined by the maximum and minimum value of the

I corresponding component over the set of data. In particular, let

A= {a, a,2  , ,

1 29I
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where

ai (ail, i2 , ai)

be a set of data representing a particular target object. The hyper-

box just described may now be specified by the two n-tuples

WM (MMl ' n

and

where

S= M a o ( a i . )
i=l ," "",S

and

= Min (a..).i=l ,--- ,S

Thus, a point X will be in the hyperbox if and only if

Cim < x<Wm
m - W-M

and thus, associated with the object whose training set is A. Al-

though such an identification procedure is qu-te sim- it has a number

of drawbacks. Not least of these is the very large volume of the hvper-

box which does not contain any data points and thus, serves no useful

ciassification purpose and, in fact, may contribute to erroneous

classification.

30
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I To avoid such problems, it would appear that the volume of the

I enclosing hyperbox should be minimized in some sense. One way of

specifying such a minimal hyperbox is to crient the faces a ,- 'g the

axis of point "spread." This may be done in toe following way. Let

A bV- the set of trainirg data and assume S, the number of points in A,

I to be not less than n, the space dit~ension. The first step in

specifying the "minimal" hyp•crox is to determine a hyperplane, H1 ,

which passes through the set of points in A and which is oriented along

j the axis of distribution of the points. Let this hyperplane be denoted

by the weight vector (hyperplane normal) ' = (wral 'i2' -- ' 'in ) and tihe

I real rnumber T. More precisely this hyperplane is the one wnich minimizes

(38) z-1 = 2
!i=l

x where

(39)i = '

For z, to be minimized it is necessary tIa:

(4wa =0, j = 1, 2, -', n

I and

I(41) 0.

I From (?8) and (39)

31



(42) 0 =2 i ai ( ai , n

jW a.. \Wi ij 1 ,

and

a z I S T,
--- •(43) =0 =-2 k •i "ai - T)

From (43)

(44) ST ÷ a- i

or

(45) TI W

p

where p : a is the first moment of the set A.

The set of equations (42) form a homogeneous system of n equations

in n unknowns since T. is dependent on W, by (45). In order to determine

a nontriviai solution, a constraint needs to be added to the systiem (42).

One reasonable constraint is to assume that the sum of the weights and

threshold is not zero or

w here

I

Thus, T1  k -w I and (42) becomes
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0 2 ai.j (W'l a.- k + 0
I i=l

S S
Wl(aii + 0• 2 k a.ij

or

S S
(47) k a, ai + I), j =l , 2, 1, , n.

In matrix form this becomes

D b1  C11  C12  * . i .l cQ 111
2 2 1 C22 • "C 2n '12

1 (48)

bin Cnl Crt2 Cnn Wi.

II
I where

s
S(49) bj = k aij

I and

I SCjk =~ Z ai~(~ + 1)._k i j 1 J aik

°I

g3



After a solution to (48) is obtained the second hyperplane, H2 , I
denoted by its weight vector, W2, and real number T2 , may be found which

minimizes

) = S 2(51) 2 : 621i~l 2i

subject to the constraints that

(52) W1  W 2

where P

(53) Fi= + -T 2 . 'I

The constraint given in (52) may be introduced into the problem by

introducing the Lagrange multiplier, The problem thus becomes one I
of minimizing L

S 2 4
(54) z2 = 2 + )l 12 " Ii=l

This minimization requires that

3z2
(55) 3 -2 0, j = 1, 2, .. , naw2j

and

i U2 az2
(56) -T2  = 0.
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Thus

•z S
(57) 0 - 2 2 ai (2 ai T2) + XI a.lj

w2j i=1 j '' 1i

I0 '5)o z2 s
(5)T 2il (W2 ai T 2)

and

II az2
(59) 0- w~-2 " l"

Again requiring that •2 I + T= k 0 gives for (57)

S<I s1
(60) 0= 1 2 A ( 'a( k + I)•+a)+j l Ai (w ai w"2i

'I
S ÷ S

= 2 ai (ai +-I) - 2 k ) ai.+ x l
2 i i=1 . 1lj

I
Observe that from (58)

(61) T2 = w2 " P

as before. Eqs. (59) and (60) give the problem in matrix form as'I

35
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b1 Cll C12  . Clin w•1 0'21

2 2 1 C22 ' C2n 12 "'22

(62)

bn Cnl Cn2  * Cnn Owln W 2n]

0 Wll w12 " "" in l

where

S
(63) bj =2 k I aij

i=l

and

S
(64) "Cik = 2 a ai (aik + 1).

1=1

Continuing in this nanner to step 9. gives

bI1 CII C12 •..Cln •oli w21 • . . cOg.11l w°,Il

b2  C2 1  C2 2  " C2 n '12 (422 - • - w,-1,2 WOz2

I.I

(65)1jb n Cnl Cn2 ' ""Cnn 'Cin '2n * " -l,n W.n

0 Wil u12 . ."wln 0 0 . . . 0 x1

0 21 w w22 . w2n 0 0 . 0 A2

0 W --1,I w"-I,2 '0",-l,n 0 0 . . . 0 j 9,-I
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where £ : 2, 3, ... , n,

(66) b= 2 k ij

and

1 (67) Cjk = 2 aij (aiR + 1)

I When k = 1 the first hyperplane may be found from Eq. (48). Further-

more, since k is arbitrary and nonzero it may, without loss of generality,

I be set equal to one. Note further that

(68) Tji = wj p , j = 1, 2, ... , n.

I
By solving the n problems just described, the face hyperplanes

J may be found. The actual face positions may be found by locating two

hyperplanes parallel to each Hi (their weight vectcrs will be _t.i) such

I that all of the points in A lie between these hyperplanes. The hyperbox

9 faces are then characterized by the structure [.i; Tiu, Tit], i = 1,

2, .,, n, where

(69) T. = Max ( ai "i lu j~l,.--,S

I and

(70) Tit = Min (÷s.i aj)
j=l,-.. ,S 1 3

* 37

'I



I{
LJ

One measure of the volume of the hyperbox and thus, the cluster-

ing of the data is the distance between parallel faces. This distance,

di., is given by the equation

(71) d Tiu - Tit

:l Wij
j=l '

The hyperboxes and corresponding face distances were computed for the

data representing the prolate spheroid, the cylinder, the cube, and the

hemispherical boss. This information is shown in Tables VI, VII, VIII,

and IX respectively. In these tables Tl and T2 correspond to Tiu and Tit

of Eqs. (69) and (70) respectively. T3 represents -i " • and indicates

where the box center is with respect to the center of gravity or first

moment. If the box center and the center of gravity overlap then

T3 = (Tl + T2)/2. D represents the face distances as computed from

Eq. (71).

Hyperel 1 i pse

A second type of closed hypersurface useful in the classification

of target data is the hyp-rellipse. If such an ellipse has its center

at the origin and its axis of symmetry aligned with the coordinate

system then the ellipse is defined by

(72) d i X 2 + d2 x22 + .-- + dn Xn2 =1 .

Generally the data set, A, will not center on the coordinate origin

nor will the point distributions, forming the axis of symmetry, align

38

. .... ... .



a4T EpRODUCIBLE

('U '-4 1

11, ~ ~ :9t OU nz .C .P 0 4 1 VW I- Or l 1 i

GGSI & ;& at MG &- LSgas -- , 6 1 r SaMU. IN m

& Is r. M NG

w a. as a N I I N4 ý"nIý H4 )vvr

N v 1 a Nm % - N) K 1-411, 4.4.4 *4N.- .4.4 m n

V' 0 M IM Va N 0M55 0 %1 r a aN m N-a

"-4-4 -4 4 .4

Om ma& aum SO a a
-J. 1. 11. 1. 1 1

a m.a a a MM* a.CC

0 Na 14. ').4 m " n .4 .,' -4 cmN . N Q .r. 0-f 4 e

3c& l a s is'sl sI I '

Kjn f; m~ON0 ~ E ' U S S s & & & t

<n 1 1 1 1 1 1 # 1 1 1 8 I s- '

a- I . 1 0 0 a s m Ic fI A W 0I 0.

ce".4.4..4OlM ý.M N W10 1 1 .4-s 4 &N1 40NIN.0NIf

IV 0)N o o10m A ON w M-4a-aF. NI3"94



w F U .40 r, No-.4 rs' 0 % %N10v1 N4~ r- ( .4 "C'J r)

0. pl y MN( r ) . (SV %J 4C lMw.cr 0ý uI \
- ao ml -W at !;f IJ )- )' f. ' 1 I0 r Ir II .U ,QD-21 -

w~~~~~~~~~~~~~~~~~~~ 'MNiI A ý lMr ) 0d O ý0C 0G 11 40 C
cý4 0:NQ cz

M M as Mg ,Ds amsa isa m m M aý sG ;

01* l I- v SI Ni ayvp)W ý0 )- ), Dw0c - DG

F-) .4 .4 w- W.-4-4 N -4 4-4 14 14l -4

n4 0. tz M 10 MMNý M1 N ' 10 0 0,

-4ol* 4 ) . 0 V u " 4 0 N v 1 ýr,0 *O) . P N 4N N ýAM,,

MC0 OLD4N'. v~~t~~ sw NNE Memslm ." 1 Nv - N N ILI10 W P04 .) fN )

L M M a M is 0 a .

-' 4 Ml -4 N 4 ý 4 .4 4 -4

L-C- 0 1111Ir

CO GO I Vtf ' 1 M() . VQD - 0 01A ý t)r,4 q % U f 0 P) g 0
17 4q-. O &~N~c nqq10 , lw" . N Z" flIN Jo as("rco 0 N p

o o 10 a ý 1 \ NI It V a 0 a~ a . I a% als n
-Jý

-4 14 14. - N W) .j-4

M 0ý 4 M 13 00 0lN
W U\ int DU 4 r , 7 ,ML tI o ý eMr lf . at 0e lW 41

- l .J 0 ,V , .Ii A C VO t CC~L4' NNLC .N - Z. V W)r N , tI4CC ,0 N W)f l I- *S CC -IM*. *IVo l1

L.c.1 S. m s11) ^ a als Iz l uts IQ M ISn a0G) M-

x

X- c 7z 14vo w oy -) -4 .q 04 -l 5.M- l ' to o 1

w 41)c 1 J N.5 Cl M Z00 0 . - - M C\ DS I " 10. -4UI..U r U

0i t% Sl - m I as " I S m -S I

N.. WU 0r 145a.4 -g 4 clP-4 v w \ C0 ,M4 .4.4 c

NOT REPRODUCIBLE 40



4 ~ NOT REPRODUCIBLE

w1 VS0?I-,0 ,0ccI vc M1 , In ItS1 OM0 (,Mr

ý I? ý I I I ý c I

I IY Y -4 -t...4 .. 1-) -1 -0 -4 -1

Q . 1 n. 1 0c 4V. 0" W In~J~ 91..0 Ilt.4 " I mC3.ITN J.0 .w 1" .

C9m 0 a s'IS0 m-a Is ( ea

I ruIa.4 .4.1 .44- 1 0 IV1 v VaC J... -4 mV 0 ,I N1

(1I2- 1 ,I %V : ,I %A Ina S) 5 r. . In" 1 S 1 0 9 & '
in N I. In I, 01 11 11 N i N INSna 41 t aN1 .Gm

I I I

*11 4 -f - CQ -u q

V-. -I NNws., -01,In 0w 0Nm 0 s 0n

I ý S I I ý Iý I Iý I?

to 41 S .

p11 .. 11 n1
wL nrm0 . ,NI 0 c 1 0Nw0N0 0r . 1 l



X,. RCYF, zJ % C) P) wY- t;4 'L (V* c4 a

1111 er w IN JNI r k.

V c' fyp % W 'r 40 49) C

' -Y C.-4 J% NA 1-* .
C, 'V.V

1, 0: II
% taL ?Q -. m-

I I1 I 3

a\, C' ICc. C'C1' M. c U.oC C 1%

03 I\ IlJ nt - ' oý I ILI 333 41 W11 v1 P91

to. *o*'V r.... mr.~.. Z. % a .%e

3 r 1) 'C 14 Cl tr. 13111 ) 4- r oJ\Vý

3. C' 3.. dý 4.*3 C'.. C:C S L

- ~ ~~~~~ t"Niz4..~'~

4 - 4. ' .*. N~' 0 ~ ". N ~ ?. 3' ~*..~ .3 .0N CM .N

- ~ ~ ~ ~ ~ ~ ~ . r' .f' Cl 
C(0 N, cu 

43'l .. 4J ) .4434 arO,4~~-(J
V4 C4. 13, -C4 -l" ýO

4N4X

L; ýc (v



.1 with the coordinate axis. Under these circumstances tne ellipse will

be described by

1 (73) (-_ p (X 1,

I where i is the ellipse center and P is the matrix describing the ellipse

orientation. The problem now becomes one of estimating the parafeters

SI • and P for an ellipse which completely encloses the data set.

One easily obtainable estimation of these parameters may be made

on the basis of the location -nd orientation of the hyperboxes described

above. The center of the ellipse may be aligned with the center of the

hyperbox or with the cent2r of gravity of the data set. Call this

center Z. Then a new coordinate system may be found by moving the old

9 coordinate system origin to the E thus forming the data !zet

(74) A' = {aI , as }

I where

I,
The orientation of the ellipse may reasonably be choosen to

coincide with the hyperbox described above. Letting W,. 3 nL

the rrdered ret of hyperplanes found for the hyperbox, the unit vectors

describing a basis for a rotated coordinate system aligned with these

I vectors become
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(76) _, i W 1, 2 n..

Thus, the data set in this rotated space becomes

A l = {a l a s -

where

(77) (-*i)T = W(aII)T

for
!T

[l*

w2

(78) W =

II
Swn*

Thus, since W is nonsingular

(79) (ai)T a Wl ( T(a

II
Thus, an elliDse circumscribing the data set A" has a defining equation

of the form of Eq. (72).

For an ellipse to circumscribe this data it is necessary that

4). -*.
(80) d • Vi - 1 <0, i - 1, 2, .-- , S

where

-II



d = (d1 ,d 2 , d -- ,dn)

I and

(811 Vi = (a"i2 , ai2, 2 2

I
The determination of d from inequalities (80) will thus specify

j the ellipse.

This problem may now be stated as a linear programing problem

I by modifying (80) to

I ÷ +

(82) d • Vi 4 Si = 1, i = 1, 2, ... , S

subject to the constraints that

(83) dj > 0, j = 1, 2, -. , n

I
and

I (84) Si >_ 0 , i = l, 2, -'-, S.

Since the smallest ellipse is required an appropriate objective function

is the minimization of

-I S
(85) z= sI i =1

Upon solving this linear p ogramming problem the coordinate system

1 may be transferred back to the original system as follows. Let.

45
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d1  0
d 2

(85) D

0 dn

Then the equation of the ellipse becomes

(87) 1 = -" D (+,,)T

but

(88) (X,,)T = W-(',)T

= w-1(_ - )T

or

(89) 1= (X- ) (W'1)T D W-1 (X- Z)T.

Thus, the enclosing ellipse for each object class is specified by the

set of parameters r,, W'l and D.
46



III,
I mCONCLUSIONS

I A study of the identification of targets using their frequency

responses has been carried out. The objects considered for classification

m were represented by a set of points in a twelve dimensional Euclidean

space corresponolng to the twelve test frequencies. Only one object

was comDletely s-metricil and thus represented by a single point. Some

p of the other objects considered, e.g., a spheroid, cubre, hemispherical

boss, provided a different return depending on the asi:,ect angle. Thus

m each object was usually represented by a set of point• scattered over

a portion of the twelve-space. The first and most important fact to

ascertain was whether the classes were separable. The investigation

I revealed that indeed all classes considered were separable, moreover

each class was linearly separable from all other classes.

I( A very interesting and useful fact was discovered in the process

of constructing the hyperplanes separating the various classes. It was

found that the average number of non zero components of the separating

I vector was three. It thus appears that the dimensionality of the

feature extraction process may be substantially reduced from the twelve

that was originally postulated. The implications of this discovery

with respect to the reduction in the equipment complexity required for

I~ system implementation are quite obvious.

In order to test the reliability of detection based on the

separating hyperplanes, substantial amount of additional data were

I obtained covering new aspect angles for the various objects considered.
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These data were used as test data as compared to the first data which

constituted the training sets. The results of the test showed that all

test data used were correctly identified.

A study was also carried out into the ef'Fects of noise on the

separability of the classes considered. The effects of noise on both

training sets and test sets were studied. The results indicate that

when the training sets were noise free the system would correctly

identify noisy test sets up to noise l.vels of the order of 10 percent

oi^ the signal. With regard to noisy training sets, it was shown that

class separability was possible up to noise levels of 50% of signal,

indicating that an adaptive classifier may b! very beneficial for

situations where the training samples are either noisy or the population

incompletely known. One such adaptive procedure has been developed and

found to converge quite rapidly, in most cases eour iterations or less

were adequate.

An automatic target classifier has been developed and successfully

-.ested on various objects. The target responses used were contaminated

by noise to varying degrees. The results have indicated that a high

probability of correct classification could be obtained up to moderate

amounts of noise and measurement errors.

A technique has been devised to determine target dynamics, such

as the rotation axis of a satellite, based on its vector trajectory

in n space.

A study has been carried out of the use of nonlint t separating

hyp)ersurfaces for classification of objects that may not be linearly

separable. Two types of closed surfaces have been used, hyperboxes and
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I i hyperellipsoids. The use of these surfaces led to an assessment of

SI the clustering properties of the various objects studied. It was

found that the object classes examined were, tightly packed and occupied

T Iextremely small volumes.

Further work in assessing the resolvability of new objects and

I the distribution of their representative point classes is continuing.

4
!

I
I

I
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APPENDIX A

INTERPOLATION ALGORITHM

The interpolation of the backscatter data requires interpolating

twelve functions of aspect angle one for each of the illuminating

frequencies. There are, of course, many procedures which may be-

used to accomplish such interpolation. In virtually all cases, a very

large system of equations must be solved in order to determine some

approximating function or spline fit. Furthermore, each system of

data requiring interpolation has a variable range of aspect angles to T
be considered. Because of these things a local interpolation pro-

cedure was desired.

Consider the situation shown in Fig. Al. The function f(x) has T
been specified by its values at x = x., x, ... $, xn. A particularly

straight forward wji' of interpolating F(x) is to connect adjacent I
points, say f(xi) 'id f(xi+l), by sections of one or more quadratics.

f (x)Yn-
Y2

- I
Ko K1  Kfl n

Fig. Al. Int' "polation schema.
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-j In particular consider the values of the functicn at the points xiI,

Ixi and xi+I. Call the functional value Yi-l' Yi and Yi+l respectively.

These three points may then be used to describe a quadratic of form

I
(Al) y a ai1 x2 + a i2 x +a i3

I which is defined by

I x X a

2

Yi+2 i+1 xi+1  1 a.

i for i = 1, 2, .. n-l. A solution to (A2) will produce a quadratic

approximation of f(x) given by (Al) for the range xi 1 < x

Because a solution to (A2) for all i in the specified range is straight

forward a better approximation may be made as follows:

(A3) y all x + a1 2  3 ' - -

(4ai-l,l + ai,l 2  a i-1, 2 + ai, 2  ai-1, 3 + ai,3(A4) Y = 2x + 2x + 2-

22 2

and

(A5) y : an-l,l x2 + an-i,2 x + an-1,3, Xn-I <x <xn.
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lhis approximation, effectively, is ar average of two quadratics for
all x outside of the ranges from xo to x. and X,_l to xn. Since the

data used here is well behaved in the sense that the first and second

derivatives are small, the lack of slope matching at the approximation

boundaries should not appreciably affect the interpolation.

The appropriate coefficients required by (A3), (^4), and (A5) may

be found from Eq. (A2) after making some appropriate assumptions. Since

the aspect angles for the data were taken in equal steps, assume that

xi = x0 + i6 where 6 is the spacing increment. Finally, without loss

of generality, it may be assumed that xo = 0. Thus, solving (A2) yields

- yi- - 2yi + Yi+l
(A6~) al: 262

26• 2

*2i + 1) yi-I + 4iyi - (2i - 1) yi+j
(A7) ai 2  26

i2 26

i(i + 1) yi-I - 2(i - 1) Y. + i(i - 1) Yi+"
(A8) ai 3 = 2 -

for i =1, 2, -. ,n -1.
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X HEMI-SPHERICAL BOSS

DIAMETER =0.795 M
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0 kolarization :

Magnitude

\f(MHz) 150 ._00 450 60" 750

30 .111 .089 .059 .029 .008
60 .385 .302 .195 .094 .025
90 .687 .519 .317 .145 .037

120 .883 .621 .340 .137 .030S150 .938 .608 .320 .148 .041
180 1.182 .901 .653 .372 .108
210 2.037 1.712 1.260 .677 .186
240 3.026 2.501 1.736 .862 .222
270 3.574 2.826 1.803 .791 .181
300 3.604 2.667 1.477 .502 .084330 3.294 2.271 1,125 .459 .151

360 22.876 2063 1.378 .887 .9

i Phase

30 .298 .274 .353 -. 32 .37
60 2.203 2.187 2.249 2.273 2.097

90 7.141 7.646 8.283 8.972 11.08S120 17.2 19.011 23.9 29.695 34.44
I150 39.1 50.18 71.24 96.I12 112.53

180 77.0 97,66 120.02 133.92 140.22
210 100.73 117.54 132.3 140.84 144.94
240 106.38 121.61 134.24 141.28 144.44
270 108.1 124.44 137.39 144.44 147.63
300 I111.65 121.97 149.26 164.16 -177.61
330 I118.67 148.5 -176.57 -126.29 -92.82
360 129.35 175.07 -133.54 -95.92 -81.37

HEMI-SPHERICAL BOSS

Il
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ILLUMINATION

CUBE

EDGE LENGTH : 0.682 M

56

.. ... ...



!IT
21U) r-. 0 COU)UntLo f-03

Co co*r

I .' C Y)\ C\ZCJ cl

In Iný ;r--

I) .cOa CV)CJ~~ m C~j

LnU) 004 M-.- (M ýr 0, zr C
Ta In cC% a-M e.J e'J r, C%., U) C>.

aI i -V c ,

UMe ID-.. r- Cý OD U)U%

a ~ ~~ ~ ~ a) al i1 L

m U)U M W ::r M U)i

U)~0 tL.).0-t. O

0 - V) a-. 47 U) f \ l:R C~

Ci~~~~~~ aoa t . ;-t

:I Co M~t r.-"I C CO Q C U)

t I

U)-~~~~~~~ -.-- CMUa.a.~UC0C J)

INIc
04 CJ O! - r., "~ "I

10 :r aaC

57



.1
IJ

I LLUMINATION

FI I

x THIN WIRE

DIAMETER =5cm

IILENGTH -- P i

58

• = - = .= .: -,,. .- • ... ... . .... .... .. . .... .... .... ....... .... .... ........ _ _, ,, = o ... ___ _ . _ . . . . _ _ _ .. . . : _ .._ , ,, • = • = = • = -• = • .. _ ._ . . . .._ __ . . _ _ _ ._ _ .... . _._ = _....,,., .... .....--- - ,,,..-- -----. -.-.--- .-----.----



Polarization : C

IMagnitude

ftMHz) 300 go.

30 .002 .- 09
60 .009 .042S90 .031 .153

120 .084 .460
150 .08 ,466180 .056 .316

210 .059 .253

240 .092 .227
270 .139 .211
300 .112 .198
330 .093 .186
360 .10 .172

Phase

' 0 0 0

60 358 35890 349 349

"120 312 314
150 236 241
180 210 223
210 191 219
240 163 218
270 il 219
300 60 221
330 34 224
360 6.6 234

THIN WIRE

[I5

Ii 59
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ILLUMINATION

t I

SPHERE
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IT'

size Magnitude

d =Irn d = 0.6m d =.637m

1

f(M1Iz) •cond. cond. r = 2.208

30 .26 .057 .013
CO .983 .223 .05
90 1.66 .488 .107

120 1.47 .792 .175
150 .74 .194 .237
180 ,652 .986 .269
210 1.184 .809 .242
240 1.15 .539 .153
270 .713 .299 .143
300 .771 .391 .29
330 1.09 .614 .387
360 1.02 .736 .394

I _Phase

30 359 0 0
60 354 359 359
90 340 355 357

120 339 349 354
150 347 340 347
180 76 333 336
210 98 332 318
240 108 340 280
270 i39 17 182
300 204 76 128
330 231 93 99
360 249 100 72

SPHERE

I
I

A

I
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"•INCIDENT

I ILLUMINATION

I yi

/

PROLATE SPHEROID
MAJOR AXIS = 1.59 M

MINOR AXIS =0,795 M
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t!

INCIDENT
e ILLUMINATION

I I

Ii I

CY LI NDER

DIAMETER = 0.6--15 M
LENGTH = 127 m
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